

Company in brief

FuseMail®, the email division of j2 Global®, is an advanced managed email solutions provider that, for

more than 20 years, has been ensuring the secure and reliable delivery of corporate email messages.

Providing email solutions to more than 25 million mailboxes, FuseMail o�ers a range of cloud-based

email security services including sophisticated spam and virus filtering, email archiving, encryption,

continuity, hosted Microsoft® Exchange and hosted webmail. FuseMail provides award- winning,

comprehensive solutions that are expertly delivered and supported by dedicated teams in Canada, the

United States, the UK and Ireland ensuring clients receive optimal performance and guaranteed peace

of mind.

Case overview

FuseMail needed to collect and act on email latency to keep their cloud-based secure email service

performant. Their current queue threshold monitoring did not provide visibility into live tra�c or system

performance specifics. To address this, they built an email latency collection system and used InfluxDB

to store the high cardinality metrics gathered from their custom mailers to the tune of over 1.5 million

time series per database. Using InfluxDB for event logging storage, and Grafana for data visualization,

FuseMail surpassed their monitoring goals by gaining unexpected visibility, control, and debugging

capabilities.

Data monitoring and maintenance leveraging raw data

2 / 13

“We relied on queue depth to detect delivery lag, which shows
you when you have really big problems, but it doesn't show
you any of the little problems. There were lots of small issues
bubbling under the radar.”

Dylan Ferreira, lead systems administrator

The business problem

The FuseMail technical team was assigned the task of collecting email latency statistics on their core

mailer. The timing data is confined to the time their mailer spends processing messages (scanning,

filtering, and routing). The requirements were that they keep long-term latency percentile data in daily,

weekly, and monthly aggregates so that they can report their performance and track it against their

SLA, review their software updates and deployments, check for changes in overall performance, and

improve capacity planning. The faster they could identify spam and a compromised account or system,

the better their email security solutions and customer experience.

The technical problem

FuseMail had relied on queue threshold monitoring to detect delivery lag. This monitoring method

indicates overall system health but does not provide in-depth latency insights or insights about actual

latency in production. Further, relying on a single metric like queue depth makes it impossible to tell the

di�erence between an increase in message rate or a timeout caused by an unhealthy dependency. The

initial idea was to send probe messages through their mailer: periodically send messages through the

platform, catch them on the other side, and track how long it took for them to go through.

3 / 13

The Probe Message

The probe message approach presented the problems of maintaining lists of hosts, maintaining special

probe accounts, the di�culty of generating probes to test all possible routes through the platform, and

the fact that probes add extra load. Rather than testing in an isolated and artificial environment,

FuseMail decided to measure actual production tra�c. Around the same time that they were assigned

this project, their mailer team was working on building event logging directly into their mailer.

The mailer would publish information on deliveries into NSQ (a simple distributed message bus) for

consumption by various downstream services. Upon realizing they could tap into this to gather stats on

their production tra�c, their mailer team agreed to add high-precision timing data to the payload,

enabling them to get message counts and, e�ectively, a new form of logging that allowed them to zero

in on customer experiences. To store that data, they set out to search for a time series database.

The solution

“With InfluxDB, we had all the benefits we saw in Prometheus
with labels, without the tradeo�s of immediately aggregating.
And on top of this, we could store multiple fields per row, so
lots of useful context could be stored along with the metrics.”

4 / 13

Why InfluxDB?
FuseMail chose InfluxDB because it can store raw metrics, it does not aggregate data on ingest, and it

can store multiple fields per row. Each of InfluxDB, Prometheus and Graphite have a place in FuseMail

architecture, but for any event logging, FuseMail uses InfluxDB.

Upon choosing InfluxDB, FuseMail performed load testing on it to determine the:

● Speed at which to push data into InfluxDB with the hardware they had available

● Size of storage they would need

● Schema design in cardinality (selecting tags and fields)

● Optimum InfluxDB config and ingest config for the data

● Impact of Continuous Queries (CQs) on the database while under load

Among the InfluxDB load testing lessons learned were:

● Batched posts to the HTTP-API are fast and reliable whereas UDP, used alongside an

ephemeral NSQ channel, caused data loss anytime the host was under pressure.

● Continuous Queries (queries that run automatically and periodically on real-time data and store

query results in the specified measurement) needed to be modified with an overlapping

look-back to fill in whatever might not have made it in by the time they did their Continuous

Query.

● Early dashboard mockups were valuable to understand exactly what data to collect and what

aggregations are needed.

5 / 13

Early Dashboard Mockup with Random Test Data

In working with InfluxDB, FuseMail relied on nsq_tail to consume data since their mailers produce event

log data into NSQ. To transform or pre-filter the data in any way, they piped it through jq, a lightweight

and flexible command-line json processor. To work with json formatted data, they built what they call

json_to_influx. It takes a stream of json in payloads on STDIN, outputs InfluxDB line protocol to the

HTTP API, and uses a config to match it to a schema. FuseMail refer to this piece of their architecture

(nsq_tail, jq, json_to_influx) as the “consumer”.

Why Kapacitor?

FuseMail had explored Kapacitor in R&D work, pushing event log data into it out of their mailers and

writing TICKscripts to filter and aggregate the data down and to spot compromised accounts or spam.

The TICKscripts would aggregate the data into views such as recipient address count by sender

address, hello count by sender address, or sender domain count by IP.

FuseMail decided to use Kapacitor, InfluxData’s real-time streaming data processing engine, in a

redesign of their latency metrics setup (v.2.0) to meet the requirement of General Data Protection

Regulation (GDPR) that was coming into e�ect. GDPR prohibits export of Personally Identifiable

Information (PII) such as email addresses, IP addresses, etc., out of a user’s region. Yet FuseMail’s model

required that they maintain historical data centrally, so they redesigned their approach to collect and

act on the data locally and adhere to the GDPR data requirements locally, then send the aggregation

back to the central databases to maintain a historical view. They did this by writing the raw event log

data in each data center to a local InfluxDB in that datacenter that had local retention policies and then

using Kapacitor to perform batch queries, so they can aggregate the local data centrally.

6 / 13

Technical architecture

InfluxDB in v1.0 of FuseMail’s Email Latency Metrics Setup

In FuseMail’s v.1 of the email latency collection system, the dataflow was as follows:

● The mailers pushed data into NSQ.

● A set of “consumers” in each DC (a total of nine data centers) batch-posted into a central

InfluxDB database instance, where Continuous Queries aggregate the data down.

● FuseMail ran dashboards directly from this instance.

● At the time they created v.1, the database couldn’t handle the combined cardinality of hosts and

customers. So they ran two of these rigs (databases): one tagged by data center, hostname,

and several other low-cardinality, low-priority tags, and one tagged by data center and

customer, which provided a view into customer-specific experience problems.

7 / 13

InfluxDB in v1.1 of FuseMail’s Email Latency Metrics Setup

When v.1.1 of FuseMail’s email latency collection system came out, InfluxData had released the Time

Series Index (TSI)—which supports a large number of time series, i.e., a very high cardinality in the

number of unique time series that the database stores. So FuseMail found that a single database could

easily handle all of the cardinality (a cardinality of 1.75 million at the time).

InfluxDB and Kapacitor in v2.0 of FuseMail’s Email Latency Metrics Setup

In v2 of FuseMail’s email latency metrics setup integrating Kapacitor, the dataflow is as follows:

● The per-DC InfluxDB databases hold IP addresses, but with tighter retention policies, while the
central InfluxDB database gets high-level aggregations and drops all PII for long-term storage.

● This model scales better as the per-DC databases only have to cope with the raw data from a
single DC, while the central database only has to cope with ingesting the long-term
aggregations.

● Sensitive data doesn't have to leave the data center, and FuseMail still get their long-term
percentiles and counts in a central place that’s easy to query.

● InfluxDB retention policies can be set locally to help fulfill GDPR requirements.

8 / 13

To provide the latency stats for which the project was initially launched, FuseMail would get a daily or

weekly rate, have InfluxDB aggregate hourly, have Grafana do a sum query of InfluxDB of hourly

aggregates, and then lock aggregations to specific date boundaries (such as week or month).

Aggregations for Reporting Purposes

What's next for FuseMail?

FuseMail plans to further explore Kapacitor’s anomaly detection capabilities (to detect compromised

accounts and incoming spam waves) as well as Telegraf’s metrics collection capabilities. Telegraf, which

now has an NSQ “consumer” that can take json in and transform it into line protocol into Influx, can now

replace FuseMail’s json_to_influx.

9 / 13

Results

“When I began, I thought I'd be spending most of my time
figuring out how to get data into InfluxDB e�ciently, but once
that was taken care of, I found myself spending even more
time looking at the data and finding new ways to express it.”

Looking at the raw data over the first few weeks, FuseMail started seeing interesting patterns: micro

outages and timeout retry patterns which revealed underlying config problems, query issues, and

hardware problems that had gone unnoticed by threshold monitoring. They started to recognize distinct

patterns in the data, like glyphs or signatures of specific types of problems. They realized that by

examining raw data scatterplots, they could tune everything in their stack.

Unexpected Advantages of Raw Data

FuseMail built a dashboard for looking at email delivery issues that were di�cult to detect from the logs
and called it “Warhol Vision” (recalling Andy Warhol paintings).

10 / 13

Warhol Vision

The dashboard features four large panels running nearly the same query, but each panel shows the
data tagged by one of four main tags:

1. Direction – inbound versus outbound tra�c
2. Data center – which data center that tra�c was in
3. Mailer – which mailer or which host that tra�c was in
4. Customer – which customer the messages belong to

The dashboard shows all critical dimensions of the data at once and thereby the scope of an issue to

debug it faster.

Because FuseMail measured live tra�c, they started to use all the raw data to debug their environment.

Having all the raw data they could get with InfluxDB, as opposed to an aggregated system, proved

extremely valuable because it provided unexpected visibility, to the extent that the actual SLA

monitoring requirements became a side issue.

11 / 13

Other Interesting Views

FuseMail can now build retrospective dashboards based on the available data, to examine a particular

problem. For example, they run a Continuous Query to grab the data for worst customer experiences in

the last 24 hours, resulting in a lightweight and useful table. Having the customer numbers as a label

means they can find which customers are having problems and address that, rather than probe

messages that only indicate system health as a whole.

About InfluxData

InfluxData is the creator of InfluxDB, the leading time series platform. We empower developers and

organizations, such as Cisco, IBM, Lego, Siemens, and Tesla, to build transformative IoT, analytics and

monitoring applications. Our technology is purpose-built to handle the massive volumes of

time-stamped data produced by sensors, applications and computer infrastructure. Easy to start and

scale, InfluxDB gives developers time to focus on the features and functionalities that give their apps a

competitive edge. InfluxData is headquartered in San Francisco, with a workforce distributed

throughout the U.S. and across Europe. For more information, visit influxdata.com and follow us

@InfluxDB.

12 / 13

http://influxdata.com
https://twitter.com/influxdb

13 / 13

http://influxdata.com/get-influxdb/

